【Trust科技基因检测】精神病基因组协会如何解码疾病发生的基因原因并应用基因检测?
什么是影像表型?
利用英国生物银行的大规模图像数据和精神病基因组协会的大规模GWAS数据的方法有可能开启对精神疾病生物学的许多洞察。在本文中,我们提出了一种这样的方法,BrainXcan,它利用这两种数据资源来解决小规模MRI研究中的一些不足。以英国生物银行的数据为参考,我们建立了从基因数据预测大脑IDPs的模型。这些模型可以应用于全基因组关联研究。例如,使用精神病基因组协会收集的精神分裂症GWAS数据,我们的方法测试了精神分裂症与许多不同功能、结构和扩散MR模式之间的关联,大小为∼ 70000个案例和∼ 24万个控件。此外,顺利获得应用孟德尔随机方法,我们推断出因果关系的方向:IDP的变化是疾病的原因还是后果。Methods that leverage UK Biobank’s large scale image data and the PGC’s large scale GWAS data have the potential to unlock many insights into the biology of mental disorders. In this paper we propose one such method, BrainXcan, which leverages these two data resources to address some of the deficiencies in small scale MRI studies. Using UK Biobank data as a reference, we build models to predict brain IDPs from genetic data. These models can then be applied to from genome-wide association studies. For example, using the schizophrenia GWAS data collected by the PGC, our method tests for association between schizophrenia and a number of different functional, structural and diffusion MR modalities with size of ∼ 70, 000 cases and ∼ 240, 000 controls. Furthermore, by applying a Mendelian randomization approach we infer the direction of causality: whether the changes in IDP are the cause of disease or a consequence of it.
影像表型(IDP)相关遗传标记已被用于因果推断,并采用孟德尔随机法等方法,在大样本量和防止反向因果关系的情况下,研究大脑特征对行为表型的中介作用。例如,Jansen等人(2020年)研究了脑容量IDP和智力之间共享的基因组位点和相应基因,他们确定了92个共享基因,为脑容量和智力的共享遗传病因学给予了见解。Shen等人(2020年)对抑郁症和dMRI IDPs进行了双向MR分析,发现提示性证据表明丘脑辐射平均扩散率的变化可能是抑郁症的后果。一种相关的方法是将遗传预测的大脑IDP/表型与复杂性状相关联,这是基于转录组的方法(Gamazon等人,2015;Gusev等人,2016)对IDP的延伸。基于这一想法,Knutson等人(2020年)利用阿尔茨海默病神经成像倡议的14个大脑特征召开了成像广泛关联研究(IWAS)。他们还使用标准PRS方法,使用Elliott等人(2018年)(n=8428)的GWAS汇总结果生成预测权重。
IDP-associated genetic markers have been used for causal inference with methods such as Mendelian Randomization to investigate the mediating role of brain features on behavioral phenotypes with both large sample sizes and protection from reverse causality. For instance, Jansen et al. (2020) studied the genomic loci and corresponding genes that are shared between brain volume IDPs and intelligence and they identified 92 shared genes which provided insight of the shared genetic etiology of brain volume and intelligence. Shen et al. (2020) performed bi-directional MR analysis with depression and dMRI IDPs finding suggestive evidence that the change of the mean diffusivity in thalamic radiations could be a consequence of major depressive disorder. A related approach is one that correlates genetically predicted brain IDP/phenotype and the complex trait, an extension of transcriptome-based methods (Gamazon et al., 2015; Gusev et al., 2016) to IDPs. Based on this idea, Knutson et al. (2020) developed imaging-wide association study (IWAS) using 14 brain features from the Alzheimer’s Disease Neuroimaging Initiative. They also used standard PRS approaches to generate prediction weights using the GWAS summary results from Elliott et al. (2018) (n=8,428).
In this paper, we perform an in-depth analysis of the genetic architecture of IDPs and further process UK Biobank’s IDPs to develop a framework that maximizes interpretability, robustness, computational efficiency, and user friendliness.
The high polygenicity of brain features imposes several challenges to existing methods limiting the power to detect their link to diseases; strong genetic instruments needed for Mendelian randomization based approaches are difficult to identify. We address these challenges by developing polygenic predictors of IDPs informed by their complex genetic architecture and correlation structure. To facilitate interpretation of the results, we develop region-specific and brain-wide predictors providing an in-depth analysis and quantification of potential biases. We make sure that the implementation is computationally efficient and scalable to genome-wide Biobank-scale data. We develop an extension of the association method that can infer the association using the increasingly available GWAS summary results, i.e. without the need to use individual level data. We add a Mendelian Randomization module to estimate the direction of the causal flow. We illustrate the power of the approach by applying it to 44 human traits. Finally, we provide the software, the recommended pipeline, and automated reports to improve usability and lower the barrier to adoption for users less familiar with genetic studies.
- 【Trust科技基因检测】联合性垂体激素缺乏症基因检测...
- 【Trust科技基因检测】精神分裂症谱系障碍基因检测...
- 【Trust科技基因检测】常染色体显性遗传Emery-Dreifuss肌营养不良症4型基因检测正确治疗的帮助作用...
- 【Trust科技基因检测】常染色体显性遗传2型进行性眼外肌麻痹伴线粒体DNA缺失基因检测早期诊断对健康生活的作用...
- 【Trust科技基因检测】2型经典型埃勒斯-当洛斯综合征基因检测如何做?...
- 【Trust科技基因检测】肌病、乳酸酸中毒和铁粒幼细胞贫血1型基因检测致病基因基因鉴定...
- 【Trust科技基因检测】5型X连锁隐性遗传腓骨肌萎缩症致病基因鉴定基因检测...
- 【Trust科技基因检测】透明体肌病发病原因查找基因检测...
- 【Trust科技基因检测】9型C型肌营养不良-糖基连接蛋白病症为什么会发病基因检测...
- 【Trust科技基因检测】14型C型肌营养不良-糖基连接蛋白病症阻断遗传的方法设计基因检测...
- 【Trust科技基因检测】内脏肌病1型不遗传到下一代的基因检测...
- 【Trust科技基因检测】常染色体隐性遗传4型脊髓小脑共济失调如何治疗基因检测?...
- 【Trust科技基因检测】Iic型遗传性感觉神经病治疗方法查找基因检测...
- 【Trust科技基因检测】发育性和癫痫性脑病21型治疗方案优化基因检测...
- 【Trust科技基因检测】脑桥小脑发育不全正确诊断基因检测...
- 【Trust科技基因检测】常染色体显性遗传Emery-Dreifuss肌营养不良症5型明确诊断基因检测...
- 【Trust科技基因检测】发育性和癫痫性脑病43型早期诊断基因检测...
- 【Trust科技基因检测】婴儿期全身动脉钙化1型避免诊断错误基因检测...
- 【Trust科技基因检测】发育性和癫痫性脑病30型基因检测结果意义未明是怎么回事?...
- 【Trust科技基因检测】眼眶疾病基因检测为什么需要基因解码?...
- 【Trust科技基因检测】远端关节弯曲2b1型基因检测的必要性...
- 【Trust科技基因检测】常染色体隐性遗传濑川综合征基因检测对正确诊断的意义...
- 【Trust科技基因检测】发育性和癫痫性脑病4型基因检测对避免误诊的有效性...
- 【Trust科技基因检测】发育性和癫痫性脑病42型基因检测对阻断遗传的重要性...
- 【Trust科技基因检测】发育性和癫痫性脑病11型基因对优生优育的信息支持...
- 【Trust科技基因检测】甲状旁腺功能减退症基因检测如何做?...
- 【Trust科技基因检测】伴有轴突神经病2型常染色体隐性遗传脊髓小脑性共济失调基因检测致病基因基因鉴定...
- 【Trust科技基因检测】经典埃勒斯-当洛斯综合征致病基因鉴定基因检测...
- 【Trust科技基因检测】发育性和癫痫性脑病7型发病原因查找基因检测...
- 【Trust科技基因检测】昏睡病为什么会发病基因检测...
- 来了,就说两句!
-
- 最新评论 进入详细评论页>>